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Bubbly flow and its relation to conduction in 
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(Received 30 August 1990) and in revised form 3 May 1991) 

Following Wallis, the relation between non-viscous bubbly flow and conduction in 
composites is examined. The bubbles are treated as incompressible and correspond 
to  non-conducting inclusions. A simple relation is found between the effective 
conductivity and the energy coefficient which is agreement with previous 
calculations. It is shown that the energy coefficient is frame dependent and, in the 
frame of zero volumetric flux, is equal to the virtual mass density. Zuber’s virtual 
mass density corresponds to the conductivity of the Hashin-Shtrikman coated- 
sphere geometry. This connection is exploited to  extend Zuber’s result to ellipsoidal 
bubbles. The hyperbolicity of effective equations derived from a variational principle 
is analysed for various bubble configurations. Without bubble clustering the 
equations are ill-posed (unstable). However, when the bubbles group into ellipsoidal 
clusters the resulting effective equations are well-posed for a wide range of parameter 
values. 

1. Introduction 
The effective conductivity of composite materials consisting of spheres suspended 

in a matrix has been studied extensively over the last century. Difficulties concerning 
conditionally convergent series and integrals arise when attempting to compute 
effective conductivity. Different techniques have been devised to overcome these 
problems such as Batchelor’s renormalization (Jeffrey 1973) or Ewald summation 
(see for example, Smith & Ashcroft 1988). 

Similar difficulties arise when trying to deduce effective properties in bubbly flows. 
One such effective quantity is the virtual mass coefficient of a bubbly mixture. The 
virtual mass density is a phenomenological function that depends on the void 
fraction and bubble configuration. Loosely speaking, it is a measure of how much 
kinetic energy in the liquid is due to bubble motion. I n  some models of bubbly flow 
another phenomenological function, related to the virtual mass, plays a key role in 
determining the stability of the effective equations. More explicitly, the question of 
hyperbolicity in the dilute limit rests on the coefficients of the a and a2 terms of this 
function. Here a is the void fraction. See for example Lhuillier (1985), Geurst (1985), 
Wallis (1989b), or Pauchon & Smereka (1991). This indicates that accurate 
calculation of these coefficients is decidedly more important than a small correction 
to  the effective equations. 

The virtual mass of a spherical bubble in an inviscid, irrotational, unbounded 
liquid is 

m = &!T, (1.1) 
t Present address : Department of Mathematics, University of California, Los Angeles, 
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where pd is the density of the liquid and r is the volume of the bubble. The virtual 
mass density for a bubbly flow is a non-trivial problem because one must consider the 
mutual interaction of the bubbles. In order to reduce these interactions dilute 
dispersions of bubbles are usually considered. Results in the literature have been 
expressed in the form 

where a is the void fraction and b is a constant that depends on the details of the 
pairwise interaction of the bubbles. 

An attempt to calculate the virtual mass density was made by Zuber (1964) who 
allowed for the presence of the other bubbles by surrounding each sphere with 
another sphere of a radius equal to the average interbubble distance. The outer 
sphere was considered to be stationary. He found b = 3. 

Another derivation of the virtual mass density was performed by van Wijngaarden 
(1976). He considered a cloud of bubbles initially a t  rest and calculated the average 
velocity attained by the bubbles under a quick acceleration of the liquid and found 
b = 2.78. Several technical difficulties arise in this calculation and are overcome using 
results from Batchelor (1972) and Jeffrey (1973). 

In  a subsequent development, Bieshuevel & Spoelstra (1989) extended the 
relationship between the fluid impulse and dipole strength of a single sphere to a 
collection of bubbles. They also encountered difficulties due to conditionally 
convergent integrals which are also overcome using Batchelor’s renormalization 
technique. They found b = 3.32. 

Wallis (1989b) showed that one can use the effective conductivity (electrical or 
thermal) to derive the added mass and the kinetic energy due to the relative motion 
of the bubbles. Using Maxwell’s expression for the conductivity he showed that one 
could recover Zuber’s result for the added mass. Wallis then showed that there is 
another definition of the added mass and explains how i t  is related to Zuber’s result. 
Wallis’ study is important because it allows one to use known effective conductivities 
thereby avoiding many technical difficulties. Earlier than Wallis, Mercadier ( 1981) 
had made some important observations concerning effective conductivity and 
Zuber’s expression for the virtual mass. 

In  this paper we continue Wallis’ discussion and further explore the analogue 
between effective conductivity and bubbly flow. We present an alternative derivation 
of Wallis’ results and suggest that there are other natural choices of reference frames 
that would give different virtual mass coefficients. By considering two different 
frames we recover Wallis’ results and the formulae of van Wijngaarden (1976), Kok 
(1988) and Biesheuvel & Spoelstra (1989). It is also shown that Zuber’s (1964) 
formula is exact for the coated-sphere geometry of Hashin 6 Shtrikman (1962). 
Zuber’s result is then generalized to bubbly flows containing oblate ellipsoidal 
bubbles. 

In $4 we investigate the relationship between the effective conductivity and 
another phenomenological constant used in the literature. This constant, sometimes 
mistaken for the virtual mass density, relates the square of the velocity fluctuations 
in the liquid phase to the relative velocity squared. Wallis (1989 b)  calls this constant 
the exertia and we call it  the Reynolds stress coefficient. This constant is crucial in 
applying a variational principle to deduce effective equations describing the mixture. 
Also the specific form of this constant as a function of void fraction has been shown 
to determine the stability and hyperbolicity of the effective equations. 

The effective conductivity of different distributions of bubbles is discussed in $6 
and the form of the Reynolds stress coefficient is investigated. One important 

m = & ~ ~ a ( l + b a ) + O ( a ~ ) ,  (1.2) 
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conclusion is that the effective equations derived from a variational principle are not 
hyperbolic for any unclustered bubbly fluid. However, we give arguments to suggest 
that the formation of ellipsoidal bubble clumps yields hyperbolic effective equations. 

2. The analogy with effective conductivity 
The physical problem that motivates the following discussion is uniform bubbly 

flow in a pipe or duct. In  this situation it is observed that the bubbles are, on average, 
moving in the same direction. Furthermore we assume that in any section of pipe 
long enough to contain a large number of bubbles they are all moving with roughly 
the same velocity. This is consistent with the assumptions used in averaging bubbly 
flow, see for example, Biesheuvel & van Wijngaarden (1984), Geurst (1985), or Wallis 

As an idealization of this flow we first consider a finite collection of spherical 
bubbles contained in a square box of fluid denoted V. Next we periodically extend 
this to fill all space. The fluid will be considered to be inviscid, incompressible and 
irrotational. Each bubble is assumed rigid and given the same velocity denoted by 
U, Since the flow is irrotational, the velocity field is given by 

(1989a). 

ut = -Vq5 where V2q5 = 0, (2.1) 

Vq5.AK = - u' , (2.2) 

and the boundary condition on each spherical bubble surface is 

where c$ is the velocity potential and A, is the outward unit normal of the Kth 
bubble. We choose our frame of reference to be one where q5 is periodic on V. The 
implications of this choice will be discussed later. 

The kinetic energy per unit volume of the liquid is 

where V,  is the portion of V that is occupied by liquid. Now since 9 depends linearly 
on U then K must be proportional to UZ. We write 

K = $dY. (2.4) 

This equation defines what we will call the energy coefficient, K ,  of the bubbles. It 
reduces to the same definition of the virtual mass as for a single bubble, see Milne- 
Thomson (1968). The goal is to find the kinetic energy for a given arrangement of 
bubbles and thereby deduce the energy coefficient for the collection. 

This is achieved by making a comparison with the problem of heat (or electrical) 
conductivity through a matrix of unit conductivity dispersed with insulating 
spheres. Once the comparison is made the virtual mass will be linked to the effective 
conductivity of the mixture. 

We begin by introducing a new field. 

T = U - r + $ .  (2.5) 

VT*fiK = 0. (2.6) 

From (2.2) the boundary condition for T on the bubble surface is 

Since Vq5+ 0 for small bubble concentration this implies VT+ U in the above limit. 
The analogy is now clear. The above situation corresponds to insulating spheres in 
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a conducting matrix with an imposed temperature gradient U. For convenience we 
take the conductivity of the continuous phase to be one. 

The effective conductivity u* of such a medium is defined as the constant of 
proportionality linking the average heat flux with the average temperature gradient 

where 
0 for r i n  V ,  
1 for r in V ,  u(r) = 

is the thermal conductivity, u* is the effective conductivityt; V,  and V ,  are the 
volumes that contain bubbles and liquid respectively. Since # is a periodic function 
on V with mean zero (2.5) implies 

$ I V V T d V =  U. 

Using Green's theorem the definition (2.7) for the effective conductivity can be 
replaced by the equivalent definition, see for example Bergman (1978), 

$Jv a(VT)2 dV = cr*172. 

Since u = 0 in we have 
1 

.JVt (VT)2 dV = a*@. 

Now substituting (2.5) into (2.10) we have 

1 
(V#)2dV= (g*- l+a)U2-2U.-  V#dV, 

1 dvt V s ,  

where a is the void fraction. Using (2.5), (2.7) and (2.8) we have 

V$dV = (o*+a-l) U. dV( 
This combined with (2.11) gives 

(V#)2 dV = (1  -c * -o~)  172. 

Comparing (2.13) with (2.3) and (2.4) we have for the energy coefficient 

K ( a )  = pc(l-u*-a).  

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

This result was obtained by Wallis (1989 b )  (see his 53.3) using the same analogy but 
with a different approach, where IT* is 1 //3 in that  paper. It is interesting to notice 
that from (2.12) we have 

(2.15) 

t Strictly speaking cr* should, of course, be treated as a tensor. However, we will consider media 
which are isotropic or have axial symmetry with the applied field in the axial direction. In this case 
cr* represents an eigenvalue of the conductivity matrix and U is an eigenvector. 
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which indicates that .(a) is also the constant of proportionality between the induced 
liquid momentum and the bubble velocity. 

Although we have defined the results for periodic extensions of a particular 
configuration in V we can let V become infinite and it is physically clear that the 
results hold for random statistically homogeneous configurations as well. Therefore 
we conclude that the formula for the energy coefficient holds for any configuration 
of bubbles for which an effective conductivity is defined. Furthermore, the analysis 
extends to bubbles of any shape provided that the effective conductivity is known 
and we assume the shape of the bubbles remains fixed. By assuming that the bubbles 
have a fixed shape we can neglect surface tension. 

In a subsequent section we shall study the relationship between bubble distribution 
and virtual mass but for now we recall Jeffrey’s (1973) calculation for the effective 
conductivity of a random array of spherical insulators in matrix of unit conductivity 

C* = 1 -$a + ka2 + 0(a3),  (2.16) 

where k = 0.75 for well separated suspensions and k = 0.59 for well mixed 
suspensions. Substitution of (2.16) into (2.14) produces 

.(a) = pc - -ka2 +0(a3). t 1 (2.17) 

This result is significantly different from the formulae for the virtual mass coefficient 
obtained by Zuber (1964), van Wijngaarden (1976), and Biesheuvel & Spoelstra 
(1989) who all find k close to - 1.5 instead of 0.59 or 0.75. This might suggest that  
the definition of energy coefficient and the virtual mass coefficient are different for 
collections of bubbles while being the same for single bubbles. Also, it is important 
to realize that the calculation done by these investigators is done in the zero-volume- 
flux frame of reference. In the next section we will show that by transforming to this 
frame of reference we can recover these results. 

3. Virtual mass and frame of reference 

the frame in which qi is periodic. The bubble velocity in this frame is 

and the liquid velocity is 

where the prime denotes transformed variables. The kinetic energy density is 

We now transform to  new frame of reference moving with velocity AUrelative to 

u = ( l - A )  u, (3.1) 

u; = -hU-Vqi, (3.2) 

Substituting (3.2) into (3.3) and using (2.12) and (2.13) we find 

K = ~c[( l -a)(1-A)2+cr*(2A-1)]u? (3.4) 

Also, the energy coefficient is the constant relating the transformed bubble 
velocity to the transformed kinetic energy. Therefore it follows that 

I .  [ ( 1 - A I 2  

cr*(2A - 1) 
K’(O1) = p /  l -a+ (3.5) 
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Next, we shall compute the value of A needed to give zero volumetric flux. In the 
moving frame we have 

where j ;  is the volumetric flux, U’ is the bubble velocity and ( 
over the liquid phase. Using (3.2) and (2.12) one can show that 

j ;  = au’+(l-ol)(u;)c, (3.6) 

denotes an average 

(u;)[ = -AU+ 1-- ( :a)u. (3.7) 

This combined with (3.6) yields 

j ;  = [-A+l-CT*] u. (3.8) 

Now& = 0 holds if h = l-CT*. (3.9) 

Substituting (3.9) into (3.5) produces 

(3.10) 

where ~ ~ ( a )  is the energy coefficient in the zero-volumetric-flux frame. Wallis (1989b) 
also obtains (3.10) using a different approach. An inspection of (3.7) and (3.4) reveals 
that there is no analogy to (2.15) for any h + 0. This was noticed by Wallis (1989b). 

Both van Wijngaarden (1976) and Biesheuvel & Spoelstra (1989) consider dilute, 
random, and well-mixed suspensions. The effective conductivity according to (2.15) 
is given by 

CT* = 1-~a+0.59a2+0(013). (3.11) 

Substituting (3.11) into (3.10) produces 

K ~ ( c ~ )  = ipPc a( 1 + 3 . 3 2 ~ )  + O(m3). (3.12) 

If we compare (3.12) with the result for the virtual mass coefficient of Biesheuvel & 
Spoelstra (1989) we find it is identical, see (1.2). Also (3.10) is in agreement with 
Biesheuvel & Spoelstra’s calculation of the virtual mass coefficient for the periodic 
lattice. 

Next we examine the calculation of Zuber (1964). He considered the effects of the 
other bubbles by surrounding each bubble with a ‘security ’ bubble. The security 
bubble has zero velocity corresponding to the zero-volumetric-flux frame. The entire 
space is then filled with these security bubble elements. Since spheres do not tile 
space well a fractal arrangement is required to fill up the volume. See figure 1. This 
is the same configuration as considered by Hashin & Shtrikman (1962) in their 
coated-sphere geometry. They show that the effective conductivity for insulating 
spheres can be calculated exactly for all volume fractions, a, and is 

(3.13) 

This expression for the conductivity was obtained by Maxwell (1881) for random 
distributions and the derivation is only accurate to O(a) in that case. Substituting 
(3.13) into (3.10) gives 

(3.14) 
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FIGURE 1.  This is the coated-ellipsoidal geometry for oblate ellipsoids. The thick lines are the 
bubble surfaces and the thin lines are the security ellipsoids. For spheres this is the configuration 
which gives Zuber’s result exactly. The direction of flow is marked by the arrow. 

This is precisely Zuber’s result for the virtual mass coefficient. Therefore we conclude 
that Zuber’s result is exact for the geometry of bubbles pictured in figure 1 when 
those bubbles are spheres. 

These results demonstrate that the virtual mass coefficient is equal to the energy 
coefficient in the zero-drift-flux frame. Furthermore it suggests that had these 
authors done their calculations in different frame they would have obtained different 
results. This raises the question : What is the correct frame for defining the virtual 
mass, if any? The choice of reference frame (zero drift flux) made by van 
Wijngaarden (1976) and Biesheuvel & Spoelstra (1989) is important because it allows 
them to remove difficulties with conditionally convergent integrals. However, the 
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observation of Wallis (19893) that (2.13) and (2.15) have the same coefficient 
suggests that the periodic reference frame could also be a natural choice. Certainly, 
another natural choice is the frame where the average liquid velocity is zero. This 
becomes more evident in the following section: in $ 4  we shall discuss another 
phenomenological function that is frame indifferent and appears naturally in some 
bubbly flow models. 

4. Reynolds stresses and hyperbolicity 
When the bubbles move through the liquid they induce both a mean flow, u,, 

and a fluctuating part, u;. By analogy with turbulence the product of the fluctuations 
is called the Reynolds stress tensor. The volume average of the Reynolds stress 
tensor plays a key role in bubbly fluids. The importance of this term will be outlined 
in what follows. 

The average kinetic energy of the liquid phase can be written as 

K = -4 (<uc):+ (~;%, (4.1) 

where u; = u,- (u,),, and ( .), denotes an average over the liquid volume. If it is 
assumed that the flow is irrotational then the deviation of the liquid velocity from 
its mean must be the result of the relative motion of the bubbles with respect to the 
average liquid velocity. To express this notion one writes 

( u 3 ,  = fW u:> (4.2) 

where u, = U- (u,)~ and f(a) is a phenomenological function that depends on the 
configuration of the bubbles. This relationship has been used to Lhuillier (1985) and 
Pauchon & Smereka (1991) ; Geurst (1985) uses a similar relationship except thatf(a) 
is replaced by mG(a)/(l  -a), where mG(a) is the phenomenological function 
introduced by Geurst and should not be confused with the virtual mass density. 
Wallis (1989b) has discussed the importance of this function in modelling bubbly 
flow * 

One possible way to derive effective equations for bubbly flow is to substitute (4.2) 
into (4.1) and interpret the result as an energy functional. One can then apply a 
variational principle where the averaged mass conservation laws act as constraints. 
Effective equations have been derived in this way by Geurst (1985) and Pauchon & 
Smereka (1991). Geurst’s equations were examined by Wallis (1989~) .  

An examination of the effective equations derived in this manner reveals that !(a) 
plays the deciding role in the determination of the hyperbolicity of the model. More 
specifically, for the case of massless bubbles, Pauchon & Smereka (1991) define the 
following function : 

l +  f ( 4  r ( a )  = - 
1-a a2(1-a)’ (4.3) 

and that show if 2 r 2 - r r ~  2 o (4.4) 

then the effective equations are hyperbolic and the solutions are stable. Here the 
prime denotes differentiation with respect to a. Equation (4.4) is equivalent to (6.1) 
of Geurst (1985) in the limit of incompressible and massless bubbles ; see Appendix. 
Hyperbolicity is important for otherwise the equations are ill-posed. If we let 

f(a)= c1 + c2 012 + o(a3), (4.5) 
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then in the dilute limit the stability condition reduces to 

1 +c,+c2 < 0. (4.6) 

In what follows we shall use results from $2 to derive.f(a) in terms of the effective 
conductivity. Our first observation is that  
bubbles since the bubbles tend to induce an 
Indeed, from (2.14) we infer 

which implies 

U is not the'relative velocity of the 
average relative velocity in the liquid. 

( l - Z ) U ,  l -a  

Next we note that (u;2), = (u2c- ( U C X  

= (IV~lZ),- @$>?. 
Using (2.13) and (4.7) in (4.9) reveals that 

(u'2) - -( a* 1 -K) uz 
,-1-a 1-a 

Combining (4.10) and (4.8) shows that 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) Therefore we have 

Wallis (1989b) also obtained (4.12) and he callsf(a) the exertia. This result can also 
be obtained from the energy coefficient formula (3.5) once it is recognized that 
(1 - a)pJ(a) is the energy coefficient in the frame where the average fluid velocity 
is zero, corresponding to h = 1 -a*/( 1 -a). 

If we consider well-mixed random suspensions then we have r* = 
1-&t+0.59a2+O(a3). Substitution of this into (4.12) and expanding about a = 0 
gives 

f(a) = ~a+0.16a2+O(a3).  (4.13) 

Kok (1988) also examined the form of f (a ) .  A comparison shows that 
f ( a )  = -a2 + (1 -a) k ( a )  where k(a) is defined by equation (19) of Kok's paper. Kok 
shows that for random well-mixed bubbles k ( a )  = ;a( 1 + 3.324 + O(a3) ,  which is in 
agreement with (4.13). 

By comparing (4.13) with (4.6) we conclude that the effective equations for bubbly 
flow derived by Geurst (1985) and Pauchon & Smereka (1991) are ill-posed. Using a 
different approach both Lhuillier (1985) and van Beek (1982) arrived a t  a similar 
conclusion. van Beek suggested that the ill-posedness is physical and not an 
inadequacy of the model. He associated the ill-posedness with the clustering 
tendency of the bubbles. Geurst (1985) suggests that bubbles should tend to line up 
with the mean flow. He argues that this results in non-isotropic bubbly flows which 
will be hyperbolic. With the connection between a* and f(a) established it should be 
much easier to investigate these possibilities. We shall present some preliminary 
results in $6. 

l-a 
cT* 

f(a) = -- 1. 
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5. Bubbly flows with elliptical bubbles 
Larger bubbles rising in liquids tend to be closer to oblate ellipsoids rather than 

spheres. In  view of this let us consider a natural generalization of Zuber's model 
where the spheres are replaced by ellipses. The conductivity for this geometry has 
been examined by Milton (1981)' Bergman (1982) and Tartar (1985). The basic 
formulae below are found in Bergman's article. 

We consider a mixture of oblate ellipsoidal bubbles where each bubble is 
surrounded by a security ellipsoid, see figure 1. The ellipsoids are confocal and their 
eccentricities are el and e2 respectively. The eccentricities are related by 

where a is the void fraction. The conductivity of the mixture (when the matrix has 
unit conductivity and the bubbles are insulating) is 

a 
(5.2) r* = I-- 

1 -N'  
where N = n, - an2 and 

ni(et) = 1 + -  I--tan-'ei , i = 1,2. ( ( t 1 
Substituting (4.2) into (3.10) we find that the energy coefficient in the zero- 
volumetric-flux frame is 

Expanding (5.3) in a for el < 1 we have 

(5.4) 

n tan-' (el) - el where J='- - 
l-n, tan-'e,-(ei+ 1)-'el' 

This expression for J may also be expressed in terms of Y, the ratio of the major axis 
to the minor axis since el = ( r2 -  1);. We have 

( r 2 -  l)i-cos-l(r-l) 
cos-l(r-1) - (r2 - 1 )kz ' 

J =  

From (4.12) and (5.2) the Reynolds stress function is 

The condition (4.4) for hyperbolicity is somewhat complex but simplifies if we 
consider only small void fractions with el + 1.  For the Reynolds stress function we 
have 

f(a) = J a + i ( 2 J - 1 )  ( J + l ) a 2 + O ( a 3 ) .  (5.6) 
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Comparing (5.6) with (4.6) we conclude that oblate ellipsoidal bubbly flow is unstable 
within this approximation. 

6. The stability of various other bubble arrangements 
It was seen that the virtual mass and the Reynolds stress function could both be 

simply expressed in terms of the effective conductivity using (4.12). The behaviour 
of these two phenomenological functions for dilute, random, and isotropic 
distributions was discussed in $82 and 4. In this section we shall exploit the 
relationship with effective conductivity to analyse several other bubble con- 
figurations. 

Let us now consider a periodic array of bubbles. This is interesting, not because we 
would expected to see such arrangements, but because it will provide an exact 
solution to the dilute case and an approximate solution for the non-dilute random 
case. The periodic case was first studied by Rayleigh (1892) and has been 
subsequently studied by many others. One important result of this work is that for 
cubic arrays of insulating spheres in a matrix of unit conductivity the effective 
conductivity is 

The exact nature of the higher-order terms depends on the nature of the cubic lattice 
(simple cubic, body centred or face centred), see McPhedran & McKenzie (1978) or 
Sangani & Acrivos (1983) for examples. Not surprisingly, the leading-order term in 
(6.1) is exactly the same as Hashin’s coated sphere geometry. Furthermore Sangani 
& Acrivos (1983) show for the random close packed case (a,,, = 0.62) that 
(T* x 0.27. This suggests that for insulating spheres (3.13) is a good approximation 
over the complete range of a. Although bubbly flows are not known to exist for high 
void fraction, (3.13) combined with the results of $33 and 4 could be useful for 
fluidized beds when inertial effects are important. 

Next we consider anisotropic distributions. Geurst (1985) conjectured that (4.6) 
would be satisfied because the bubbles would tend to line up with the mean flow and 
would result in the coefficient of the a2 term in (4.5) being less than -%, since 
c1 = ; for spherical bubbles. 

The simplest anisotropic configuration imaginable is a rectangular lattice of 
spheres. Geurst’s hypothesis would entail the lattice spacing being smaller in the 
direction of the applied field (streamwise direction) compared to the cross-stream 
direction. The conductivity for such a model can be inferred from the work of 
Sangani & Acrivos (1983) although they only studied cubic lattices. They show that 
the effective conductivity takes the form 

where 70 is the volume of the unit cell (here a rectangle) and for insulating spheres 
A,, is given by 

(6.2b) 

where a is the bubble radius. The exact details of the higher-order terms are 
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determined by the details of the geometry ; see Sangani &, Acrivos (1983) equations 
(27) and (29). Note that (6.2b) combined with ( 6 . 2 ~ )  gives (6.1). 

The important feature of (6.2) is that  the leading-order terms are a function only 
of the volume of the unit cell not its shape. Substituting (6.1) into (4.12) gives 

f ( a )  = ;a+ O(aY),  

and we conclude that dilute periodic bubble mixtures all have approximately the 
same virtual mass and Reynolds stress coefficient. The upshot of this is that the 
effective equations for dilute isotropic and anisotropic flows with no clustering of the 
bubbles suffer the same fate, they are ill-posed. 

Next we will draw on some ideas from composite material research to investigate 
the properties of bubbly flow where the bubbles are arranged into clumps. As a 
simplified model we consider the coated sphere geometry studied by Hashin &, 
Shtrikman (1962) that was generalized to ellipsoids by Milton (1981) and Bergman 
(1982). We imagine a clump of bubbles to be an (oblate or prolate) ellipsoid filled with 
both bubbles and liquid surrounded by another (oblate or prolate) ellipsoid of pure 
liquid. The ellipsoids are confocal with eccentricities e, and e2 respectively. We then 
let the entire mixture be filled with those composite ellipsoids. See figure 2. Now we 
let p represent the volume fraction of the mixture that is occupied by the bubble- 
filled ellipsoids and set /? to be the void fraction within these ellipsoids due to the 
bubbles. The void fraction of the entire mixture is then 

and the effective conductivity in the direction of the mean flow is 

(T* = 1 -  P 
( 1  - cr4)-l - (n, -pn2)  ' (6.4) 

where aa is the effective conductivity of the bubble mixture inside the inner ellipsoid. 
For oblate (disk-shaped) ellipsoids n1 and n2 are given by (5.2) and the relationship 
between e l ,  e2 ,  and p given by (5.1) (with a replaced by p ) .  For prolate (cigar-shaped 
ellipsoids we have 

and 

To investigate the stability we must first computef(a). We shall use (3.13) as a good 
approximation of aa (with a replaced by /?, of course). Substituting (6.4) into (4.12) 
gives 

To continue we need to specify more information about p and /?. In this study we 
shall restrict our analysis to only two cases. We first take p to be independent of a 
(and /? is then determined by (6.3)) and second we take p to be independent of a (and 
p is determined by (6.3)). 
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FIGURE 2. The idealized clump arrangement is shown for the prolate case. The thick-lined ellipsoids 
are filled with spherical bubbles and have a void fraction 8. The thin-lined ellipsoids are the security 
ellipsoids which contain pure liquid. The direction of flow is marked by the arrow. 

Case 1. p is independent of a. 

Here /3 = a l p  and (6.5) becomes 

Now since p is a constant then it follows that n,-pn, is also a constant. If we 
substitute (6.8) into (4.3) then the hyperbolicity condition (4.4) becomes 

6P2 (3P + 3 h -  pn,) - 1) 0. 
a3 (a[3p + 3(n, -pn,) - 11 - 2 ~ ) ~  
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0.4 

Bergman (1982) shows 

f(l -p)  g nl-pn2 < 1 -p  for the oblate case, (6.10a) 

(6.10 b)  

With these inequalifiaa one can easily show that the denominator of (6.9) is always 
negative for both oblate and prolate ellipsoids. For oblate ellipsoids (6.10a) implies 
that the numerator of (6,9) is always positive. This indicates that the hyperbolicity 
condition can never be s@tisfied for the oblate geometry. For the prolate geometry 
the hyperbolicity condition (6.9) is satisfied if 

p+nl-pn, < f .  (6.11) 

Since e2 is related to el and p through (6.6) then (6.11) is an inequality involving the 
two independent variables eL and p. In the prolate geometry we have 0 < el < 1, and 
el + O  indicates that the bubble clumps become spherical. For el + 1 the bubble 
clumps become cylinders. It is important to notice that (6.11) is independent of u. 
The condition (6 , l I )  is displayed in figure 3. The results show that as volume fraction 
of clumps, p ,  increases their eccentricity must also increase if (6.11) is to be satisfied. 

Case 2. /3 is independent of a. 

0 < 72, -pn, < f (  1 -p) for the prolate case. 

Here p = u//3 and the expression for f ( a )  becomes 

(6.12) 

This is more complex than before because n2 is a function of a because e2 depends on 
p = u//3 as seen in (6.6). T b  hyperbolicity condition is then found by substituting 
(6.12) into (4,3) and examining (4.4). Here we have two independent variables, el and 
/3. Since i t  seems impossible to write down a simple analytical expression for the 
stability condition we have csmputed it numerically. For the prolate ellipsoids the 
hyperbolicity condition could never be satisfied. However, in contrast to the previous 
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I I 

FIQURE 4. This 
B 

when /3 is independent of the void fraction. 
shows the hyperbolicity condition for the oblate ellipsoids for the case 

case the oblate ellipsoid geometry did satisfy the hyperbolicity condition under a 
wide range of circumstances. The results of the numerical study am summarized in 
figure 4 where it was found convenient to use l / e l  instead of el .  Also we have 
restricted /3 < 0.62, the maximum void fraction for random arrangements of spheres. 
For the prolate ellipsoids we have 0 < e ,  G a, and el + 0 indicates that the bubble 
clumps become spherical, while e,+co means that the bubble clumps tend to 
horizontal slabs. By horizontal, we mean perpendicular to the direction of flow. 

The results contained in figure 4 show that for a fixed void fraction, a, that void 
fraction inside the clump, /3, must be sufficiently high for the hyperbolicity condition 
to be satisfied. It also shows that bubble clumps tending to slabs, ( l /e l )  -+ 0, tend to 
be more stable. An important feature displayed in figure 4 is that as the void fraction, 
a, is increased the region of hyperbolicity shrinks and that for ct 2 0.2 there is no 
hyperbolic region. This is interesting because experiments show that bubbly flow 
cannot exist above a critical void fraction. Experimentally the mitical void fraction 
is in the range 0.25 to 0.45, in rough agreement with our analp& 

Other mechanisms may also be important in determining the hyperbolicity of the 
bubbly fluid flow. In particular Biesheuvel & Gorissen (1990) have found that liquid 
viscosity and diffusive effects resulting from chaotic bubbly motiori are relevant for 
stability. Although we ignore such effects, our calculations could be useful in 
determining some of the phenomenological functions in the model of Biesheuvel & 
Gorissen, and would allow the inclusion of the effects of bubble clustering. 

We thank S. Childress, W. E and R. V. Kohn for helpful discussions. Special 
thanks are due to G. Wallis for suggesting that the slab geometry could be stable. 
This work was supported by the Air Force Office of Scientific Research, the Army 
Research Office, and the Packard and Sloan Foundations. 
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Appendix 
Here we show that Geurst’s stability condition (see Geurst 1985, equation (6.1)) is 

identical with (4.4) when one considers massless and incompressible bubbles. Our 
starting point is equation (6.1) of Geurst’s paper. We have : 

l + y 7 + - - 7 [ 1 + ( 1 + - - 7 ) ~ ]  l -a  mG(a) 1 
1 1-a mG(a) -’ 

l -a  a2 

1 x { [ 1 + y T + G 2 ]  l -a  mG(a) 1 [ 1 + 3 %+ 2mb(a)  

-[1- 1-301 mG(a) +*I} wi + ~(w:). 

-a) mL(a) 

a2(1-a) 

where R is the ideal gas constant, T is the temperature, M is the molecular mass, y 
is the ratio of the gas density to the liquid density, wo is the relative velocity of the 
bubbles to the liquid, and mG(a) is the phenomenological function that Geurst uses 
in the kinetic energy. The stability condition is given as D > 0. Now if we take the 
limit as y + 0 of ( A  I )  and use mG(a) = (1 -a) f (a)  then (A 1)  becomes 

where we have used the ideal gas law and ignored terms of O(w:) (as does Geurst). 
Here p g  is the absolute gas pressure and 

G(a) = 1 + [ 1 + f (a)  + ( 1 - a )  f’(a) + &( 1 - a)2fr(a)] [ fka,] 
(2a- i ) f (a)  1-a 

a 

Since the factor in front of G(a) in ( A 2 )  is always negative then the stability 
condition becomes G ( a )  < 0 .  By straightforward manipulations (best done with 
symbolic computation) one can establish that 

where T(a)  is given by (4.3). Therefore we see that (4.4) is equivalent to Geurst’s 
stability condition. 
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